Optimal Python Solution for LRU Cache (Interview Script)
2025-09-27
The Logic
- The bottleneck is supporting both fast lookups and fast eviction ordering.
- A hash map alone gives O(1) access but cannot track recency.
- A doubly linked list maintains usage order while the hash map provides direct access.
Implementation / Diagram
Key Invariant
The most recently used item is always at the head of the list, and the least recently used item is always at the tail.
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = {}
self.left = Node(0, 0)
self.right = Node(0, 0)
self.left.next = self.right
self.right.prev = self.left
def remove(self, node):
prev, nxt = node.prev, node.next
prev.next = nxt
nxt.prev = prev
def insert(self, node):
prev = self.right.prev
prev.next = node
node.prev = prev
node.next = self.right
self.right.prev = node
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].val
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
node = Node(key, value)
self.cache[key] = node
self.insert(node)
if len(self.cache) > self.cap:
lru = self.left.next
self.remove(lru)
del self.cache[lru.key]